Tempo a disposizione: 75 minuti

ESERCIZI

1. Sia $f: \mathbb{R}^2 \to \mathbb{R}$ data da $f(x,y) = xe^{-x^2} + y^2 - y$. Allora f ammette

 $Risp.: \overline{A}:$ un punto di massimo relativo ed un punto di sella $\overline{B}:$ un punto di massimo relativo ed un punto di minimo relativo $\overline{C}:$ due punti di sella $\overline{D}:$ un punto di minimo relativo ed un punto di sella $\overline{E}:$ due punti di minimo relativo

Punti: 7

2. Calcolare l'integrale triplo

$$\iiint_T \frac{1}{x^2 + y^2} \, dx \, dy \, dz$$

dove T è la parte di spazio interna al cilindro $x^2 + y^2 = 4$, esterna al cilindro $x^2 + y^2 = 1$ e compresa tra i piani z = -1 e z = 1.

 $Risp.: \boxed{\mathbf{A}} : 4\pi \log 4 \quad \boxed{\mathbf{B}} : 4\pi \log 2 \quad \boxed{\mathbf{C}} : \pi \log 4 \quad \boxed{\mathbf{D}} : 2\pi \quad \boxed{\mathbf{E}} : \pi^2 \log 2$

Punti: 7

3. Sia data la successione di funzioni

$$f_n(x) = \log\left(x^n + \frac{n+2}{n+1}\right), \quad x \in [0, +\infty[\,, \quad n \in \mathbb{N}^+.$$

Determinarne l'insieme I di convergenza puntuale e studiarne la convergenza uniforme in I o in suoi sottoinsiemi.

Punti: 7

DOMANDE DI TEORIA

Domanda 1. Scrivere l'enunciato del Teorema di Green nel piano.

Punti: 4

Domanda 2. Scrivere la definizione di convergenza totale per serie di funzioni e scrivere un esempio di serie convergente totalmente.

Punti: 5