Le 2022

demain

g + 11/19
\[
y = \sin x - \cos x
\]
\[
D(f(x) \pm g(x)) = f'(x) \pm g'(x)
\]
\[
y' = \cos x - (-\sin x) = \\
= \cos x + \sin x
\]
\[
D(\cos x) = -\sin x
\]
\[
D(\sin x) = \cos x
\]
\[
y = \sin(x^3 + 2x) - \cos(e^x)
\]
\[
D\left(f(g(x))\right) = f'(g(x)) \cdot g'(x)
\]
\[
D(x^n) = n \cdot x^{n-1}
\]
\[
D(e^x) = e^x
\]
\[y' = \cos(x^3 - 2x) \cdot (3x^2 - 2) \cdot \frac{\Theta}{D(x^3 - 2x)} \]

\[\Theta = \frac{-\sec(\tan(e^x)) \cdot e^x}{\tan(e^x)} \]

\[= \cos(x^3 - 2x)(3x^2 - 2) + \sec(\tan(e^x)) e^x \]

\[y = \sqrt{x^2 - 3x + 2} \]

\[= (x^2 - 3x + 2)^{1/2} \]

\[y' = \frac{1}{2} (x^2 - 3x + 2)^{-1/2} \cdot \frac{\Theta}{D(x^2 - 3x + 2)} \]

\[y = \sqrt[3]{x^2 - 3x + 2} = (x^2 - 3x + 2)^{1/3} \]

\[y' = \frac{1}{3} (x^2 - 3x + 2)^{-2/3} \cdot (2x - 3) \]
\[y' = \frac{1}{2} \sqrt{x^2 - 3x + 2} \quad (2x-3) \]

\[y' = \frac{1}{3} \frac{1}{\sqrt[3]{(x^2 - 3x + 2)^2}} \quad (2x-3) \]

\[D(\sqrt[n]{x^h}) = \frac{1}{2} \cdot \frac{h \cdot x^{h-1}}{D(x^n)} \]

\[y = \sqrt{x \cdot \log x} \quad \text{prodotto} \]

\[D \left[f(x) \cdot g(x) \right] = f'(x) \cdot g(x) + f(x) \cdot g'(x) \]
\[y' = \frac{1}{2 \sqrt{x} \cdot \log x} \cdot \left(1 \cdot \log x + x \cdot \frac{1}{x} \right) = \]

\[\frac{D \left(\log x \cdot x \right)}{D \log x} \]

\[D \left(\log x \right) = \frac{1}{x} \]

\[\frac{\log x + 1}{2 \sqrt{x} \cdot \log x} \]

\[a > 0, \ a \neq 1 \]

\[D \left(a^x \right) = a^x \cdot \ln a \]

\[D \left(a^{f(x)} \right) = a^{f(x)} \cdot \ln a \cdot f'(x) \]

\[D \left(\ln x \right) = \frac{1}{x} \]

\[D \left(\log_a x \right) = \frac{1}{x} \cdot \frac{1}{\ln a} \]

\[e \]
\[
y = \frac{x^2 + 5x - 3}{3^x} \quad D(K) = 0
\]

\[
D \left[\frac{N(x)}{D(x)} \right] = \frac{N'(x) \cdot D(x) - D'(x) \cdot N(x)}{D^2(x)}
\]

\[
y' = \frac{(2x + 5)3^x - 3^x \ln 3 \cdot (x^2 + 5x - 3)}{(3^x)^2}
\]

\[
y' = \frac{3^x \left[2x + 5 - \ln 3 \cdot (x^2 + 5x - 3) \right]}{(3^x)^2}
\]

\[
y' = \frac{-\ln 3 \cdot x^2 + x(2 - 5\ln 3) + 5 + 3\ln 3}{3^x}
\]

- 6 -
\[y = (x^2 - 3)^{2x} \]

\[
D \left[\left(f(x)^{g(x)} \right)^{p(x)} \right] =
\]

\[
\left(f(x)^{g(x)} \right)^{p(x)} = e^{\log(f(x))g(x) \cdot f(x)}
\]

\[
D \left[e^{g(x) \cdot \log(f(x))} \right] =
\]

\[
e^{g(x) \cdot \log(f(x))} \cdot \frac{g(x)}{f(x)} \cdot f'(x)
\]

\[\text{se stesse} \]

\[\text{esponente (produzione)} \]
\[
\left[f(x) \right]^{g(x)} \cdot \left[g'(x) \log(f(x)) + \frac{g(x)}{f(x)} \cdot f'(x) \right]
\]

\[
y = (x^2 - 3)^{\text{sen} 2x}
\]

\[
y' = e^{\text{sen} 2x \cdot \log(x^2 - 3)} \cdot \left(\text{sen}(2x) \cdot 2 \cdot \log(x^2 - 3) + \frac{\text{sen} 2x \cdot (2x)}{x^2 - 3} \right)
\]

\[
= (x^2 - 3)^{\text{sen} 2x} \left(2 \cdot \cos 2x \cdot \log(x^2 - 3) + \frac{\text{sen} 2x}{x^2 - 3} \cdot 2x \right)
\]
\[y = \log(e^x + 1) + \arctan x \]

\[
D(\arctan x) = \frac{1}{1+x^2}
\]

\[
D(\arctan(f(x))) = \frac{1}{1+f'(x)} \cdot f'(x)
\]

\[y' = \frac{1}{e^x+1} \cdot e^x + \frac{1}{1+x^2} \]

\[\begin{align*}
y &= \log(e^{x^2-1} + 2x) + \arctan(3x^2 - 6x) \\
y' &= \frac{1}{e^{x^2-1} + 2x} \cdot (e^{x^2-1} \cdot 2x + 2) + \frac{1}{1+(3x^2-6x)^2} \cdot (6x - 6)
\end{align*} \]
\[
\begin{align*}
\frac{3x^2 + \sqrt{x} + 1}{x^3} & = \sqrt[4]{x^4 + x^3 + 5} \\
\Rightarrow \quad y &= e^{\frac{3x^2 + \sqrt{x} + 1}{x^3}} \cdot \left(x^4 + x^3 + 5 \right)^{\frac{1}{4}} \\
D \left(\frac{3x^2 + \sqrt{x} + 1}{x^3} \right) &= \\
&= \left(6x + \frac{1}{2\sqrt{x}} \right) \cdot x^3 - 3x^2 \left(3x^2 + \sqrt{x} + 1 \right) \\
&= \left(6x + \frac{1}{2\sqrt{x}} \right) \cdot \sqrt{x} - 3 \left(3x^2 + \sqrt{x} + 1 \right) \\
&= \frac{(12x^2 + \sqrt{x} + 1) \cdot \sqrt{x} - 9x^2 - 3\sqrt{x} - 3}{2\sqrt{x}} \\
&= \frac{12x^2 + \sqrt{x} - 18x^2 - 6\sqrt{x} - 6}{2x^4} \\
\end{align*}
\]
\[D \left(\frac{-6x^2 - 5\sqrt{x} - 6}{2 \times 4} \right) = \]

\[\frac{1}{4} \left(x^4 + x^3 + 5 \right)^{-3/4} \cdot (4x^3 + 3x^2) \]

\[y' = e^{3x^2 + \sqrt{x} + 1} \cdot \frac{3x^2 + \sqrt{x} + 1}{x^3} \]

\[\frac{D \left(\text{esponenta e} \right)}{2 \times 4} = \frac{-6x^2 - 5\sqrt{x} - 6}{2 \times 4} \]

\[\sqrt{x^4 + x^3 + 5} + \frac{3x^2 + \sqrt{x} + 1}{x^3} \]

\[e^{3x^2 + \sqrt{x} + 1} \cdot \frac{1}{4} \left(x^4 + x^3 + 5 \right)^{-3/4} (4x^3 + 3x^2) \]
\[f(x) = \frac{5x}{\sqrt{x^2+1}} + 2 \sqrt{x^2-3x+3} \]

Domain:

\[x^2 - 3x + 3 \geq 0 \]

\[x_{1,2} = 3 \pm \frac{1 \sqrt{9-12}}{2} \]

No real roots.

Verify for all \(x \in \mathbb{R} \)

\[y' = 5\left(\sqrt{x^2+1}\right) - \frac{4}{2\sqrt{x^2+1}} \cdot 2x \cdot 5x \]

\[+ \frac{1}{2 \sqrt{x^2-3x+3}} \cdot (2x-3) = \]

\[= \frac{5(x^2+1) - 5x^2}{(x^2+1) \cdot \sqrt{x^2+1}} + \frac{2x-3}{\sqrt{x^2-3x+3}} \]

\[= \frac{5}{(x^2+1) \sqrt{x^2+1}} + \frac{2x-3}{\sqrt{x^2-3x+3}} \]
$y = \log(1 + e^{2x}) + \sqrt{x^2 - 4x + 5}$

Dom:

$1 + e^{2x} > 0 \quad \forall x \in \mathbb{R}$

$x^2 - 4x + 5 \geq 0 \quad x = \frac{4 \pm \sqrt{16 - 20}}{2} \quad \forall x \in \mathbb{R}$

$f(x) \geq 0$

$\log(1 + e^{2x}) + \sqrt{x^2 - 4x + 5} \geq 0$

Segue:

$\log(1 + e^{2x}) > 0 \quad \forall x$

$1 + e^{2x} > 1$

$e^{2x} > 0 \quad \forall x \in \mathbb{R}$

$\Rightarrow f(x) \text{ è la somma di due quantità positive}$

-13-
\[y' = \frac{1}{1 + e^{2x}} \cdot \frac{e^{2x} \cdot 2}{2} + \frac{1}{2 \sqrt{x^2 - 4x + 5}} \]

\[\text{D arg. log} \]

\[= \frac{2 e^{2x}}{1 + e^{2x}} + \frac{2x - 4}{2 \sqrt{x^2 - 4x + 5}} \]
\[y = \log \left(e^{1x^1} - 1 \right) + 2e^{-x} + 2 \]

N.B.

\[y = 1x^1 = \begin{cases} x & \text{per } x > 0 \\ -x & \text{per } x < 0 \end{cases} \]

\[y' = x(1x^1) = \begin{cases} 1 & \text{per } x > 0 \\ -1 & \text{per } x < 0 \end{cases} \]

\[= \text{Argm} \ (x) \]

Funzione

refuso di x

quando devo derivare un modulo

- dividere le funzioni nelle sue due parti

- derivare tenendo conto del \[\text{Argm} \ (x) \]
\[y' = \frac{1}{e^x - 1} \cdot \frac{e^x}{\text{Sgm}(x) + 2 e^{-x}(-1)} \]

\[= \frac{e^x}{e^x - 1} \cdot \text{Sgm}(x) + \frac{2}{e^x} \]

Scegliendo le funzioni e tra le

\[y = \begin{cases}
\log(e^x - 1) + 2 e^{-x} & \text{per } x > 0 \\
\log(e^{-x} - 1) + 2 e^{-x} & \text{per } x < 0
\end{cases} \]

\[y' = \begin{cases}
\frac{e^x}{e^x - 1} + 2 e^{-x}(-1) & \text{per } x > 0 \\
-\frac{e^{-x}}{e^{-x} - 1} + 2 e^{-x}(-1) & \text{per } x < 0
\end{cases} \]
Verificare che la funzione
\[y = \frac{x^2 + 2x + 2}{2} \]
soddisfi l'equazione
\[1 + (y')^2 = 2y + y'' \]

\[y = \text{funzione} \]
\[y' = \text{derivate prime della funzione} \]
\[y'' = \text{derivate seconda della funzione} \]
\[y = \frac{x^2 + 2x + 2}{2} \]
\[y' = \frac{2x + 2}{2} \]
\[y'' = \frac{2}{2} = 1 \]
\[1 + (y')^2 = 2y'y'' \]

Si sostituiscono i valori per le voci

\[1 + \left(\frac{2x+2}{2} \right)^2 = 2 \cdot \frac{x^2 + 2x + 2}{2} \cdot 1 \]

\[1 + (x+1)^2 = x^2 + 2x + 2 \ ? \]
\[1 + x^2 + 2x + 1 = x^2 + 2x + 2 \ ? \]
\[x^2 + 2x + 2 = x^2 + 2x + 2 \]

\[\text{Sì} \]
\[
\begin{cases}
 \frac{x^2}{x+2} + \sqrt{x} \sin \frac{1}{x} & \text{se } x > 0 \\
 0 & \text{se } x = 0 \\
 x \ln |x| & \text{altrimenti (} x < 0 \text{)}
\end{cases}
\]

- \(f \) è continua \(x = 0 \)

- \(y = x - 3 \) Asintoto Obliquo \(x \to +\infty \) (destra)

- \(f'(-2) = \ln 2 + 1 \)
? f continue à $x = 0$?

$f(0) = 0$ per definizione.

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^-} f(x) = f(0)$$

$$\lim_{x \to 0^+} \frac{x^2}{x + 2} + \sqrt{x} \cdot \sin \frac{1}{x} =$$

$$= \frac{0}{2} + \sqrt{0^+} \cdot [-1, 1] = (????)$$

$$= 0$$

$$\lim_{x \to 0^-} x \cdot \ln |x| = 0$$

\therefore f continue à $x = 0$.

- 20 -
\[
\lim_{{x \to +\infty}} \left[\frac{x^2}{x+2} + \sqrt{x} \cdot \tan \frac{1}{x} \right] = +\infty + 0 = +\infty
\]

\[
+\infty = \infty x \leq \frac{x^2}{x+2} = \frac{x^2}{x} = x
\]

\[
\sqrt{x} \cdot \tan \frac{1}{x}
\]

\[
\lim_{{x \to +\infty}} \sqrt{x} \cdot \tan \frac{1}{x} = \lim_{{x \to +\infty}} \frac{\sqrt{x} \cdot \tan \frac{1}{x}}{\frac{1}{x}}
\]

\[
= \lim_{{x \to +\infty}} \frac{\sqrt{x}}{x} = 0
\]

\[
\tan 0 \approx 0
\]
\[m = \lim_{x \to +\infty} \frac{f(x)}{x} = \]

\[= \lim_{x \to +\infty} \left(\frac{x^2}{x+2} + \sqrt{x} \cdot \sin \frac{1}{x} \right) \cdot \frac{1}{x} = \]

\[= \lim_{x \to +\infty} \left(\frac{x^2}{x(x+2)} + \frac{\sqrt{x}}{x} \cdot \sin \frac{1}{x} \right)^2 = \]

\[= \lim_{x \to +\infty} \left(\frac{x^2}{x^2(1+2/x)} + \frac{1}{x} \cdot \sin \frac{1}{x} \right)^2 = 1 \]

\[= 1 \]
\[
q = \lim_{x \to +\infty} \left(\frac{f(x) - mx}{1} \right) = \\
= \lim_{x \to +\infty} \left(\frac{x^2}{x+2} + \sqrt{x} \sin \frac{1}{x} - x \right) = \\
= \lim_{x \to +\infty} \left(\frac{x^2 - x^2 - 2x}{x+2} + \sqrt{x} \sin \frac{1}{x} \right) = -2 \\
\text{since } \lim_{x \to +\infty} \frac{\sqrt{x}}{x} = 0. \]
\[f'(-2) = \ln(2) + 1 \]

\[x = -2 \quad \text{e} \quad x < 0 \]

\[y = x \ln |x| = x \ln (-x) \]

\[y' = 1 \cdot \ln(-x) + x \cdot \frac{1}{-x} \quad \Theta (x) = \frac{\ln x}{x} \]

\[D(\ln -x) \quad D(-x) \]

\[= \ln(-x) + 1 \]

\[f'(-2) = \ln (+2) + 1 \quad \text{OK} \]

↑ coeff. angolare delle rette
Tangente per \(x = -2 \)
per \(f(x) = x \ln (-x) \)
Calcolo della retta tangente alla funzione in $x = -2$

Eq. retta passante per un punto

$y = f(x_p, y_p)$

m

$y - y_p = m (x - x_p)$

$\frac{dy}{dx} (x_p) = f'(x_p)$

$y_p = f(x_p) = \frac{dy}{dx} (x_p) (x - x_p) + f(x_p)$

Valore delle derivate prime in P

Valore della funzione in P
\[f'(-2) = \ln 2 + 1 \]

- \[y = x \ln |x| = x \ln (-x) \]

\[f(-2) = -2 \ln 2 \quad \text{ordinata del punto P} \]

Rette Tangente in \(P(-2; -2 \ln 2) \)

\[y = \left[\ln 2 + 1 \right] (x+2) + (-2 \ln 2) \]

\[= (\ln 2 + 1) (x+2) - 2 \ln 2 \]
\[y = \text{arctg} \ x \]

\[D(\text{arctg} \ x) = \frac{1}{1 + x^2} \]

\[D(\text{arctg} \ f(x)) = \frac{1}{1 + (f(x))^2} \cdot f'(x) \]

\[y' = \text{arctg} \ x \rightarrow y' = \frac{1}{1 + x^2} \]

\[y = \text{arctg}^2 \left(\frac{x+1}{x-1} \right) \]

\[y' = 2 \cdot \text{arctg} \left(\frac{x+1}{x-1} \right) \cdot \frac{1}{1 + \left(\frac{x+1}{x-1} \right)^2} \cdot \frac{x-1}{(x-1)^2} \]

\[D(t^2) \]

\[D(\text{arch}^2) \]

\[D(\text{arctg}) \]
\[
\begin{align*}
&= 2 \arctan \left(\frac{x+1}{x-1} \right) \cdot \frac{(x-1)^2}{(x-1)^2 + (x+1)^2} \cdot \frac{-2}{(x-1)^2} \\
&= -4 \arctan \left(\frac{x+1}{x-1} \right) \cdot \frac{1}{2x^2 + 2} \\
&= -\frac{2}{x^2 + 1} \\

y &= \arctan \left| \frac{x+1}{x-1} \right| \\
&= \begin{cases}
\arctan \left(\frac{x+1}{x-1} \right) & x+1 \geq 0 \quad x \geq -1 \\
\arctan \left(\frac{-x-1}{x-1} \right) & x+1 < 0 \quad x < -1
\end{cases} \\

y' &= \begin{cases}
\frac{1}{1 + (x+1)^2} \cdot (1) = \frac{1}{x^2 + 2x + 2} & x \geq -1 \\
\frac{1}{1 + (-x-1)^2} \cdot (-1) = \frac{-1}{x^2 + 2x + 2} & x < -1
\end{cases}
\end{align*}
\]
\[y = \arctg \left| f(x) \right| \]

\[y' = \frac{1}{1 + |f(x)|^2} \cdot \text{Sgn} \left[f(x) \right] \]

\[y' = \frac{1}{f(x)^2} \]

Funzione Segno

\[y = \text{Sgn} \left(f(x) \right) = \begin{cases}
1 & f(x) > 0 \\
-1 & f(x) < 0
\end{cases} \]
\[y = x \cdot \log |x^2 - 1| \]

\[y' = 1 \cdot \frac{\log |x^2 - 1|}{x^2 - 1} + x \cdot \frac{1}{x^2 - 1} \cdot 2x \cdot \text{sgn}(x^2) \]

\[D \log \quad D(x^2 - 1) \]

Se devo fare lo studio del teorema, pr. non derivabilità devo sempre esprimere nelle due parti

\[y' = \begin{cases} - & - & - & x & - & - \\ - & x & - & - \end{cases} \]

-30-
\[y = ax^b \ln x + \frac{1}{x} - \frac{3}{x^3} \quad \text{for } x \neq 0 \]

\[y = ax^b \ln x + x^{-1} - 3x^{-3} \]

\[y' = \frac{1}{1+x^2} + (-1)x^{-2} - 3(-3)x^{-4} \]

\[= \frac{1}{1+x^2} - \frac{1}{x^2} + \frac{9}{x^4} \]

\[y = \frac{1}{x^n} = x^{-n} \]

\[y' = -n x^{-n-1} = -\frac{n}{x^{n+1}} \]
Derivate

Esempi di derivate di alcune funzioni elementari

<table>
<thead>
<tr>
<th>$D \ k = 0$</th>
<th>$D \ 5 = 0$</th>
<th>$D \ \pi = 0$</th>
<th>$D \ 0 = 0$</th>
<th>$D \ \log_2 5 = 0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D \ x^n = n \ x^{n-1}$</td>
<td>$D \ x = 1$</td>
<td>$D \ x^7 = 7 \ x^6$</td>
<td>$D \ x^{-2} = -2 \ x^{-3}$</td>
<td>$D \ x^{\frac{2}{3}} = \frac{2}{3} \ x^{-\frac{1}{3}}$</td>
</tr>
<tr>
<td>$D \sqrt[n]{x} = \frac{1}{n \sqrt[n]{x^{n-1}}}$</td>
<td>$D \ \frac{1}{\sqrt[3]{x^2}} = \frac{1}{3 \sqrt[3]{x^{2-1}}}$</td>
<td>$D \ \frac{1}{\sqrt[8]{x^7}} = \frac{1}{8 \sqrt[8]{x^{7-1}}}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$D \ \log_a x = \frac{1}{x} \ \log_a e$</td>
<td>$D \ \log_3 x = \frac{1}{x} \ \log_3 e = \frac{1}{x} \ \frac{1}{\ln 3}$</td>
<td>$D \ \log_5 x = \frac{1}{x} \ \log_5 e = \frac{1}{x} \ \frac{1}{\ln 5}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$D \ a^x = a^x \ln a$</td>
<td>$D \ 2^x = 2^x \ln 2$</td>
<td>$D \ 2012^x = 2012^x \ln 2012$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Esempi di derivate con le regole di derivazione

Derivata del prodotto di una costante k per una funzione $D \ k \cdot f(x) = k \cdot f'(x)$

$D(5 \ x^2) = 5 \cdot D(\ x^2) = 5 \cdot (2 \ x) = 10 \ x$

$D\left(\frac{7}{3} \ \tan x\right) = \frac{7}{3} \cdot D(\ \tan x) = \frac{7}{3} \cdot \sec^2 x$

Derivata della somma di due o più funzioni $D \ f(x) \pm g(x) \pm h(x) = f'(x) \pm g'(x) \pm h'(x)$

$D(7 \ \log_{10} x + 3x + 4) = \frac{7}{x \ln 10} + 3$

$D(5x^3 - \tan x + x) = 15x^2 - \frac{1}{\cos^2 x} + 1$

Derivata del prodotto di due funzioni $D \ f(x) \cdot g(x) = f'(x) \cdot g(x) + f(x) \cdot g'(x)$

$D(\ x^2 \tan x) = 2x \cdot \tan x + x^2 \cdot \frac{1}{\cos^2 x}$

$D(7 \ \ln x \cdot e^x) = 7 \ \frac{1}{x} \cdot e^x + 7 \ln x \cdot e^x = 7e^x \left(\frac{1}{x} + \ln x\right)$

Derivata del rapporto di due funzioni $D \frac{f(x)}{g(x)} = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{[g(x)]^2}$

$D\left(\frac{2 + x}{3x}\right) = \frac{(1) \cdot 3x - (2 + x) \cdot 3}{(3x)^2} = \frac{3x - 3(2 + x)}{(3x)^2} = \frac{x - 2 - x}{3x^2} = \frac{-2}{3 \ x^2}$

Derivata di una funzione composta $D f[g(x)] = f'[g(x)] \cdot g'(x)$

$D(\sqrt{\tan x}) = \frac{1}{2 \sqrt{\tan x}} \cdot \sec x$

$D(\ \tan \sqrt{x}) = \cos \sqrt{x} \cdot \frac{1}{2 \sqrt{x}}$

$D(\ \sec^2 x) = (2 \ \sec x) \cdot \cos x = 2 \ \sec x \ \cos x$

$D(\ \sec x^2) = (\cos x^2) \cdot 2x = 2x \ \cos x^2$

Derivata di una funzione elevata ad una funzione $D f(x)^{g(x)} = f'(x)^{g(x)} \cdot \left[g'(x) \cdot \ln f(x) + g(x) \cdot \frac{f'(x)}{f(x)}\right]$

$D(\ x^{\cos x}) = x^{\cos x} \cdot \left[-\sec x \cdot \ln(x) + \cos x \cdot \frac{1}{x}\right]$

$D(\ (\sec x)^x) = (\sec x)^x \cdot \left[1 \cdot \ln(\sec x) + x \cdot \frac{\cos x}{\sec x}\right]$
FORMULARIO: tavola delle derivate fondamentali

\[y = f(x) \Rightarrow y' = f'(x) \]

FUNZIONE COSTANTE:
\[y = c \Rightarrow y' = 0 \]

FUNZIONE POTENZA:
\[y = x^n \text{ con } n \in \mathbb{R} \Rightarrow y' = nx^{n-1} \]
\[y = x \Rightarrow y' = 1 \]
\[y = \frac{1}{x} \Rightarrow y' = -\frac{1}{x^2} \]
\[y = \sqrt{x} \Rightarrow y' = \frac{1}{2\sqrt{x}} \]
\[y = \sqrt[n]{x^m} \Rightarrow y' = \frac{m}{n\sqrt[n]{x^{m-n}}} \]

FUNZIONE VALORE ASSOLUTO:
\[y = |x| \Rightarrow y' = \frac{x}{|x|} \]

FUNZIONE LOGARITMICA:
\[y = \log_a x \Rightarrow y' = \frac{1}{x \log_a e} \]
\[y = \ln x \Rightarrow y' = \frac{1}{x} \]

FUNZIONE ESPONENTEZIALE:
\[y = a^x \Rightarrow y' = a^x \ln a \]
\[y = e^x \Rightarrow y' = e^x \]

FUNZIONI GONIOMETRICHE

<table>
<thead>
<tr>
<th>FUNZIONI GONIOMETRICHE</th>
<th>FUNZIONI GONIOMETRICHE INVERSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>[y = \sin x \Rightarrow y' = \cos x]</td>
<td>[y = \arcsin x \Rightarrow y' = \frac{1}{\sqrt{1-x^2}}]</td>
</tr>
<tr>
<td>[y = \cos x \Rightarrow y' = -\sin x]</td>
<td>[y = \arccos x \Rightarrow y' = -\frac{1}{\sqrt{1-x^2}}]</td>
</tr>
<tr>
<td>[y = \tan x \Rightarrow y' = \frac{1}{\cos^2 x} = 1 + \tan^2 x]</td>
<td>[y = \arctan x \Rightarrow y' = \frac{1}{1 + x^2}]</td>
</tr>
<tr>
<td>[y = \cot x \Rightarrow y' = -\frac{1}{\sin^2 x}]</td>
<td>[y = \arccot x \Rightarrow y' = -\frac{1}{1 + x^2}]</td>
</tr>
</tbody>
</table>

REGOLE DI DERIVAZIONE:

derivata di una somma di funzioni:
\[D(k \cdot f(x) + h \cdot g(x)) = k \cdot f'(x) + h \cdot g'(x) \]

derivata di un prodotto:
\[D(f(x) \cdot g(x)) = f'(x) \cdot g(x) + f(x) \cdot g'(x) \]

derivata di un rapporto:
\[D\left(\frac{f(x)}{g(x)}\right) = \frac{f'(x) \cdot g(x) - f(x) \cdot g'(x)}{\left[g(x)\right]^2} \]

derivata di una funzione composta (funzione di funzione):
\[D(g(f(x))) = g'(f(x)) \cdot f'(x) \]